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Introduction 

A porous medium is a solid or collection of solid bodies with 
sufficient open space (pores or voids) in or around the solids to 
enable a fluid to pass through or around them [1]. The skeletal 
portion of the material is called the “matrix” or “frame”. A fluid 
can only flow through a porous medium only if at least some of 
the pores are inter-connected. The inter-connected pore space 
is termed the effective pore space, while the whole of the pore 
space is termed the total pore space. Example of a porous 
medium is an aquifer from which ground water is pumped, 
reservoirs which yield oil and/or gas [2]. The flow of fluids 
through a porous media is therefore the manner in which the 
fluid molecules move from one point of the media to another 
through the pores (voids) [3]. Flow and transport phenomenon 
in porous media arise in fields of science and engineering, ranging 
from agricultural, biomedical, construction, ceramic, chemical 
and petroleum engineering to food and soil sciences, and powder 
technology [4].  
The problem of fluid flow in porous media can be better 
understood if one takes a look at fluid flows in pipes and water 
channels.  It is rather easy to take measurements such as the 
length and diameter of a pipe and compute its flow capacity and 
pressure as a function of distance and time. In pipes the volume 
of fluid delivered at the open end depends on the pressure 

difference and partly on the cross-sectional area of the pipes if 
the pressure is high [5]. The flow of water in channels also 
depends on pressure difference but is often coded in terms of 
topography of the land. When the pressure in a pipe is very high, 
the pipe may either burst or the rate of fluid delivery will 
increase. Under the ground there are no such pipes, no clear-cut 
flow paths that can be used for measurements. The fine capillary 
like pores through which the fluid flows are not of any uniform 
cross-section nor can they be said to be rigid. The consequence 
is that the flow parameters such as porosity of the media through 
which fluids flow beneath the earth surface and the permeability 
of the fluid may in fact depend on the fluid pressure [6]. The 
models of fluid flow incorporating functional dependence of 
media and fluid properties on pressure results to complex and 
nonlinearity of the governing equations. 

Due to complex nature of porous media (for example, a 
reservoir) various researchers were attracted to tackle the 
problems related to this topic and formulated different relations 
for studying diffusion of fluids in porous media. However, most 
of the researchers derived their models on the assumption of a 
constant diffusion coefficient (diffusivity constant) [7]. The 
diffusivity in practice may not be constant and may depend on 
temperature, concentration, pressure, amongst others. In some 
attempts, where nonlinearity is retained in the models, they are 
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indirectly avoided at the solution stage through the process of 
linearization [8]. This is like abandoning the problem at hand to 
pursue the ghost of it. Also, due to the complex nature of 
multiphase flow, nonlinearity of their governing equations and 
reservoir intricacies, finding analytical solutions to practical fluid 
flow problems is impossible. Therefore, the only means by which 
such models can be solved is by using numerical methods such 
as finite difference or finite element. 

 In this work the nonlinearity of media and fluids are fully retained 
making the usual diffusion equation to be a nonlinear diffusion-
type of equation and the numerical approach used in the solution 
also fully retain the nonlinearity. 

Materials and Methods 
 
Governing laws and equations 
One of the basic laws governing fluid flow through a porous 
media is the mass conservation law, 
  
−

డ(ఘ௤௥)

డ௥ 
= 𝑟

డ(ఘ∅)

డ௧
.                                               (1) 

where 𝜌 = density of the fluid, 

           𝑞 = Darcy’s velocity 

           ∅ = porosity 

           𝑟 = radial distance 

           𝑡 = time taken 

For isothermal fluid flow the mass conservation law can be 
written as; 

𝑟 
డ( ఘ∅ )

డ௧ 
 = 𝑟 ቂ 𝜌∅൫ 𝑐∅ + 𝑐௙ ൯ 

డ௣

డ௧
 ቃ.                      (2) 

 where, 

 𝑐∅ =  
ଵ 

∅ 
 ( 

డ∅ 

డ௣ 
 )௧.            (3)                                                                                                             

𝑐∅ = isothermal compressibility of porosity                                                                    

 while, 𝑐௙ =  
ଵ

ఘ
 ( 

డఘ

డ௣ 
 )௧  .                                     (4)                                                                                                                                                                                             

             𝑐௙ = isothermal compressibility of fluid        

             𝑐∅ +  𝑐௙  =  𝑐௧ .                                        (5)                                                                                                                                                                  

             𝑐௧ = total compressibility                                                                                                  

 Another basic law governing fluid flow is the Darcy Equation, 

  𝑞 =  − 
௞

ఓ
  

ௗ௣

ௗ௥
 .                                                    (6)                                                                                                                                                                      

where    𝑝 = pressure of fluid  

              k = rock permeability 

 𝜇 = dynamic fluid viscosity                                                                                                                            

Substituting equation (5) and (6) into (2) results to; 

  
ଵ

௥
 

డ

డ௥
 ቂ 

௞

ఓ
 𝜌𝑟

డ௣

డ௥
 ቃ =  𝜌∅𝑐௧

డ௣

డ௧
  .                               (7)                                                                                                               

This is the governing equation for transient radial flow of a fluid 
through a porous rock [9].                                                     

Consider a two phase flow where the fluids are immiscible and 
there is no mass transfer between the phases. One phase (for 
example, oil) wets the porous medium more than the other (for 
example, gas) and is called the wetting phase and indicated by a 
subscripts, o. The other phase is termed the non-wetting phase 
and is indicated by g. In general, water is the wetting fluid relative 
to oil and gas, while oil is the wetting phase relative to gas. 
Several new quantities peculiar to multiphase flow, such as 
saturation, capillary pressure and relative permeability must be 
introduced. The saturation of a fluid phase is defined as the 
fraction of the void volume of a porous medium filled by the 
phase [10,11]. The fact that the two fluids jointly fill the voids 
implies the relation 

  𝑠௢ + 𝑠௚ = 1.                                                   (8)                                                                                                      

where 𝑠଴ and 𝑠௚ are the saturations of the wetting and non- 
wetting phases respectively. Also due to the curvature and 
surface tension of the interface between the two phases, the 
pressure difference is given by the capillary pressures; 

 𝑝௖  =  𝑝௚  +  𝑝௢ .                                                  (9)                                                                                                                             

Empirically, the capillary pressure is a function of saturation 𝑠଴ . 
Except for the accumulation term, the same derivation that led 
to equation (6) applies to the mass conservation equation for 
each fluid phase. Taking into account that there is no mass 
transfer between phases in the immiscible flow, mass is 
conserved within each phase and each phase has its own density, 
𝜌 and Darcy’s velocity, 𝑞.  The mass conservation equation for 
each phase is        

   −
డ(ఘ௤೚௥) 

డ௥
=  𝑟

డ(∅ఘ೚௦೚)

డ௧
 .                                  (10)                                                                                                                            

 −
డ൫ఘ೒௤೒௥൯

డ௥
 = 𝑟 

డ൫∅ఘ೒௦೒൯

డ௧
 .                                   (11) 

Darcy’s law can be generalized for the two phase flow by also 
including a relative permeability factor (kr) for each phase and 
each phase having its own viscosity and pressure [12,13]. 

 𝑞௢  =  
ି௞௞ೝ೚

ఓ೚
 , 𝑞௚  =  

ି௞௞ೝ೒

ఓ೒
 
డ௣೒

డ௥
 .                       (12)                                                                                                         

The two phase flow equation thus reads; 

  
ଵ 

௥
 

డ

డ௥
 ቀ 

௞௞ೝ೚

ఓ೚
𝜌௢𝑟

డ௣೚

డ௥
 ቁ =  ∅𝜌௢𝑠௢𝑐௧

డ௣೚

డ௧
     

                                            (13)                          
ଵ

௥
 

డ

డ௥
 ൬ 

௞௞ೝ೒

ఓ೒
 𝜌௚𝑟

డ௣೒

డ௥
 ൰ =  ∅𝜌௚𝑠௚𝑐௧

డఘ೒

డ௧
. 

In the oil and gas reservoirs, the capillary pressure is always much 
less than 𝑝௢  or 𝑝௚ and so we can say 𝑝௢ ≈ 𝑝௚   and 𝑝௖ = 0. Our 
equation reduces to a single equation. We will use the equation 
for the oil phase and replace po with p. Equation 21 reduces to; 
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ଵ 

௥
 

డ

డ௥
 ቀ 

௞௞ೝ೚

ఓ೚
𝜌௢𝑟

డ௣

డ௥
 ቁ =  ∅𝜌௢𝑠௢𝑐௧

డ௣

డ௧
 .             (14)                                                                                                                      

If the fluid properties are kept constant throughout the flow 
regime such that only the rock properties (porosity and 
permeability) varies, ignoring the subscripts equation (14) can be 
simplified as follows; 

Bringing out the constants and using product rule to open the 
brackets, 

 
ఘ௞ೝ೚

௥ఓ

డ

డ௥
ቀ𝑘𝑟

డ௣

డ௥
ቁ = ∅𝜌𝑠𝑐௧

డ௣

డ௧
.                                (15)                                                                                                                                        

 
௞ೝ೚

௥ఓ
ቂ𝑟

డ௞

డ௥

డ௣

డ௥
+ 𝑘

డ௣

డ௥
+ 𝑘𝑟

డమ௣

డ௥మ
ቃ = ∅𝑠𝑐௧

డ௣

డ௧
.         (16)                                                                                                                              

From the first term on the right in the bracket, 

 𝑟
డ௞

డ௥

డ௣

డ௥
= 𝑟

డ௞

డ௣

డ௣

డ௥

డ௣

డ௥
 

 = 𝑟
డ௞

డ௣
(

డ௣

డ௥
)ଶ.                                           (17)                                                                                                                                                 

Substituting equation (20) into (19) and simplifying further,  

 
௞ೝ೚

ఓ
[

డ௞

డ௣
ቀ

డ௣

డ௥
ቁ

ଶ
+

௞

௥

డ௣

డ௥
+ 𝑘

డమ௣

డ௥మ
] = ∅𝑠𝑐௧

డ௣

డ௧
 .         (18)                                                                                                               

 
డ௣

డ௧
=

௞ೝ

௦ఓ௖೟

௞

∅
[

ଵ

௞

డ௞

డ௣
ቀ

డ௣

డ௥
ቁ

ଶ
+

ଵ

௥

డ௣

డ௥
+

డమ௣

డ௥మ
].                 (19)                                                                                                                                     

Equation (22) will be the mathematical model of the two phase 

diffusion through a porous medium. It is a nonlinear differential 

equation since the porosity and permeability depends on 

pressure. That is, ∅ =  ∅(𝑝) and 𝑘 =  𝑘(𝑝). Equation (22) is too 

complex to solve analytically, therefore, it will be solved using 

the Finite Difference Method (FDM). 

 Model discretization 

 Discretization using the backward forward difference scheme 
[14], [15]: The backward-forward scheme is an explicit finite 
difference scheme, giving a first order convergence in time and 
second order convergence in space [16]. The spatial interval [0, 
R] and time interval [0, T] are partitioned into respective finite 
grid as follows: 

r୧ = (i − 1)∆r,                i = 1,2 … I + 1, 𝑤ℎ𝑒𝑟𝑒 ∆r =
ୖ

ூ
 .                                                       

(20) 

 t୬ = (n − 1)∆t,              i = 1,2 … N + 1,   

where ∆t =
୘

୒
 .                                                  (21) 

The numerical solution is an approximation to the exact solution 
that is obtained using a discrete representation to the Partial 
Differential Equation (PDE) at the grid point 𝑟௜ on the discrete 
spatial mesh at every time level 𝑡௡.The numerical solution at a 
grid point 𝑝(𝑟௜ , 𝑡௡) is denoted by the symbol 𝑝௜

௡  and the 
derivatives are replaced by suitable difference quotients(to get 
an algebraic equation which can be solved).The backward-
forward analog is; 

Forward difference 

 ∆𝑝௜
௡ = 𝑝௜ାଵ

௡ − 𝑝௜
௡.                                (22)                                          

Backward difference 

 ∇𝑝௜
௡ = 𝑝௜

௡ − 𝑝௜ିଵ
௡  .                                                      (23)                                                                                                                     

Central difference 

𝛿ଶ𝑝௜
௡ = 𝑝௜ାଵ

௡ − 2𝑝௜
௡ + 𝑝௜ିଵ

௡ = ∆(∇𝑝௜
௡).                  (24)                                                                                                               

 ∆(∇) = ∇(∆)        

Thus, substituting eq.25-27 into 22 results to 

௣೔
೙శభି௣೔

೙

∆௧
=

ఈ௞(௣೔
೙)

∅൫௣೔
೙൯

൤
ଵ

௞൫௣೔
೙൯

డ௞(௣೔
೙)

డ௣

∆௣೔
೙

∆௥

∇௣೔
೙

∆௥
+

∆௣೔
೙ା∇௣೔

೙

ଶ∆௥
+

ఋమ௣

(∆௥)మ
൨ .                                        

(25)                                               

Along the left boundary 

 ∆𝑝ଵ
௡ =

௣భ
೙ି௣భషభ

೙

∆௧
= 0.                                    (26)                                                  

And along the right boundary 

 ∇𝑝ூ
௡ =

௣಺శభ
೙ ି௉಺

೙

∆௥
= 0.                                  (27)                                                                                                                     

These conditions together with (28) results to 

𝑝௜
௡ାଵ = 𝑝௜

௡ +
ఈ∆௧

(∆௥)మ

௞(௣೔
೙)

∅(௣೔
೙)

൤
ଵ

௞൫௣೔
೙൯

డ௞(௣೔
೙)

డ௣
(∆𝑝௜

௡)(∇𝑝௜
௡) +

∆௥

ଶ௥
(∆𝑝௜

௡ +

∇𝑝௜
௡) + 𝛿ଶ𝑝൨.                           (28) 

p୧
ଵ = f(r), for this simulation, 

 p୧
ଵ = 4000 cos(π𝑟௜) .                                            (29)                                                                                

For i=1, 

 𝑝ଵ
௡ାଵ = 𝑝ଵ

௡ − 𝐻
௞(௣భ

೙)

∅(௣భ
೙)

((𝑝ଶ
௡ − 𝑝ଵ

௡) −
௣మ

೙ି௣భ
೙

ଶ
)  (30)                                                                                             
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For i=2 to I, 

 𝑝௜
௡ାଵ = 𝑝௜

௡ + 𝐻
௞(௣೔

೙

∅(௣೔
೙)

[
ଵ

௞൫௣೔
೙൯

డ௞(௣೔
೙)

డ௣
(∆𝑝௜

௡)(∇𝑝௜
௡) +

ଵ

ଶ(௜)
(∆𝑝௜

௡ +

∇𝑝௜
௡) + 𝛿ଶ𝑝] .                                                  (31) 

For i=I+1,          

𝑝ூାଵ
௡ାଵ = 𝑝ூାଵ

௡ + 𝐻
௞(௣಺శభ

೙ )

∅൫௣಺శభ
೙ ൯

[
ଵ

ଶ(ூାଵ)
− 1](𝑝ூାଵ

௡ − 𝑝ூ
௡  (32)                                                                     

      where, 

 𝐻 =
ఈ∆௧

(∆௥)మ
 .    and      

∆௥

௥
=

ଵ

௜
 .                       (33)                                                                                                                                                                                                            

The numerical solution is obtained by calculating 𝑝௜ 
௡ାଵ  

recursively for n = 1,. . .,N by the use of (29), (30), (31) and (32). 
In the usual diffusion equation, where 𝑘 and ∅ are constants, 
equation (30), (31), and (32) are completely ready for 
simulation. In this work, these functions are functional of 
pressure. To make any further head way one must make models 
of the functional dependence on pressure. This is the major 
departure from the known diffusion equation. Another 
departure from the known diffusion equation is the presence of 
the square on the derivative of pressure with respect to time.  

 Porosity and Permeability Models 

Porosity and permeability are two of the primary properties 
that control the movement and storage of fluids in rocks [17, 
18]. They both depend on pores in the porous medium [19]. 
Change of the pressure inside the pore spaces during 
production can affect its porosity and permeability [20].  

Constant porosity and constant permeability: The constant 
porosity, ∅ and permeability, 𝑘, model is giving as; 

 ∅ = 0.18 , 𝑘 = 1.0e − 10.                            (34)                                                                                                                                                 

 Inverse pressure porosity and permeability model: The inverse 
pressure porosity, ∅  and permeability, 𝑘 model is giving as; 

  ∅ = ∅௥௘
௣ೝ೐

௣
, 𝑘 =

௞ೝ೐௣ೝ೐

௣
 .                                      (35)                                                                                                                                                   

Sinusoidal porosity and constant permeability model: The 
sinusoidal porosity, ∅ and constant permeability, 𝑘 model is 
defined as; 

  ∅ =
∅ೝ೐ୱ୧୬ (௣)

ୱ୧୬ (௣ೝ೐)
 ,𝑘 = 1.0𝑒ିଵ଴.                              (36)                                                                                                                                              

 Linear porosity and constant permeability Model: The linear 
porosity, ∅ and constant permeability, 𝑘 model is giving as; 

 ∅ = ∅௥௘
௣

௣ೝ೐
,𝑘 = 1.0𝑒ିଵ଴.                                (37)                                                                                                                                         

Darcy flux towards the wellbore 

Equation (6) can be rearranged and integrated as; 

 ∫ 𝜕𝑝 =
௤ఓ

௞௞ೝ

௣ೝ

௣ೢ
∫ 𝜕𝑟

௥

௥ೢ
                                               (38)                                                                                                                             

 𝑝௥ − 𝑝௪ =
௤ఓ

௞௞ೝ

(𝑟 − 𝑟௪)                                        (39)                                                                                                       

where 𝑝௥ = pressure at a distance 𝑟, 

          𝑝௪ = wellbore pressure, 

           𝑟 = radial distance from wellbore, 

          𝑟௪ = wellbore radius, 

          𝑘௥ =relative permeability. 

 𝑝௥ =
௤ఓ

௞௞ೝ
𝑟 + 𝑝௪.                                                    (40)                                               

A plot of pressure against radial distance from the wellbore will 
have an intercept on the pressure axis equal to the wellbore 
pressure 𝑝௪, q is the Darcy fluid velocity towards the wellbore 
at the radial distance, r, and a pressure gradient V. 

 𝑉 =
௤ఓ

௞௞ೝ
                                                          (41)                                                                               

From the knowledge of V, the Darcy flux is computed as; 

 𝑞 =
௞௞ೝ௏

ఓ
                                                         (42)                                                                                                                             

Simulation Parameters 

The simulation parameters and the conversion factor to SI units 
are given in Table 1. 

Table 1: Values for Rock and Fluid Properties. 

Parameter Value Unit 

Viscosity, 𝜇 0.001 Pas 

Reference porosity, ∅௥௘ 0.5 _ 

Reference permeability, 𝑘௥௘ 1.0e-10 m3 

Reference pressure, 𝜌௥௘ 4000 Pa 

Total compressibility, 𝑐 5.07e-14 Pa-1 

Relative permeability, 𝑘௥ 0.1 _ 

Oil saturation, 𝑠 0.5 _ 

Length of reservoir, R 10000 M 
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Simulation procedure 

The simulation equations (Eq. 29-32) were coded in a MATLAB 
programing language. The various models of the porosity, ∅ and 
permeability, 𝑘 are contained in separate scripts  and are 
combined to give the required model. The input parameters 
contained in Table 1 were initialized with their corresponding 
values in the program. For each model chosen the simulation 
procedure is as follows; 

1. start program: discretize the diffusion type 
equation(Eq.22-25) 

2. input the parameters needed to described the 
reservoir (Table 1) 

3. set the initial conditions (Eq. 29) 

4. set the boundary conditions (Eq. 30 and 32) 

5. calculate porosity and permeability from previous step 
(Eq. 34-37) 

6. calculate the pressure at each time step from the result 
obtained in the previous step using equation (31) 

7. display results 

8. plot graphs 

9. end program. 

Figure 1 illustrates the computational cycle for each functional 
script. 

 

 Figure 1: Flow Chart Showing the Simulation Procedure. 

 

 

 

 

 

start (descretizing the 
diffusion type equation,i.e 

Eq(22-25)

input parameters 
needed to describe 
the reservoir(Table 

1)

set initial and 
boundary conditions 

condition Eq(29, 
30,32)

calculate porosity 
and permeability 

from previous time 
step(Eq.34-37)

compute pressure through time and 
space loops(31)

display values  

plot graphs(figure 2-9) 

end program
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Results and Discussion 

 Constant porosity and permeability model 

 

Figure 2: Pressure Distribution for the Constant Porosity and 
Permeability Model. 

 

Figure 3: Pressure Profile for the Constant Porosity and   
Permeability Model. 

 

When the porosity, ∅  and permeability, 𝑘 are constant the 

simulation equation (22) reduces to a linear regular diffusion type 

equation (17). The concentration of the diffusing agent should 

have a Gaussian distribution while the Gaussian picks keep 

reducing in time [21]. Our simulation equation only appears like 

a diffusion type equation since pressure is not a diffusing agent 

rather an agent that causes flow of fluids. If a fluid is to flow 

towards the origin (wellbore) the pressure distribution should 

follow the Gaussian curves for 𝑟 < 0. That is, the pressure 

distribution curves should be a mirror reflection of 

concentration diffusion curves [22]. Our simulation results 

reproduce this situation very well as shown in figure 2. For 𝑡௜ >

𝑡௝, we expect the subsequent pressure distribution curves to lie 

below those of 𝑡௝. This is correctly obtained in the simulation 

(Figure 2). Similarly, for fixed locations, we expect the pressure 

profile to follow a Gaussian decrement with time as shown in 

Figure 3. The constant porosity and permeability model is a 

baseline model with known analytic result. The correct 

reproduction of the simulation results gives us the confidence 

that while the porosity and permeability are no more constants, 

the simulation results may contain useful physics. 
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 Inverse Porosity and Pressure Permeability Model

 

Figure 4: Pressure Distribution for the Inverse Pressure 
Porosity and Permeability Model 

 

Figure 5: Pressure Profile for the Inverse Pressure Porosity and 
Permeability Model 

Figure 4 presents the pressure distribution in the reservoir for 

the inverse porosity and permeability model. An inverse porosity 

and permeability model means that the reservoir has its porosity 

and permeability decreasing with increasing distances from the 

well bore. As such the pressure drop across the reservoir should 

be less than that obtained from the constant porosity and 

permeability model as observed in Figure 4. The curves from the  

 

pressure profile of Figure 5, shows a faster decrease in the 

reservoir pressure with time on comparison with figure 3. This 

can be seen as the pressure dropped below 500 Pascal at 100 

hours while in Figure 3 it was still above 500 Pascal. Same 

behavior is observed for the other locations. Since the pressure 

of the reservoir is decreasing with time the porosity and 

permeability increased with time resulting in more fluid yield at 

the well.  
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Sinusoidal Porosity and Constant Permeability Model 

 

 

 

 

 

 

 

 

Figure 7: Pressure Profile for the Sinusoidal Porosity and 
Permeability Model. 

 

The sinusoidal porosity and constant permeability model gives a 

pressure distribution curve (Figure 6) that is sinusoidal as the 

pressure transient travels through the reservoir to the boundary. 

Also its pressure profile at a fixed distance (Figure 7) decreased 

sinusoidal with time. The pressure curves show that the pressure 

gradient occurred faster and is greater than that obtained from 

the constant porosity and permeability model. 
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Figure 6: Pressure Distribution for the Sinusoidal 

Porosity and Constant Permeability Model. 
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Linear Porosity and Constant Permeability Model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

The pressure curves obtained using the linear porosity and 
constant permeability models (Figure 8 and Figure 9) shows that 
the reservoir experienced a few hours of steady drop in pressure 
followed by an irregular, haphazard behavior in the pressure 
drop. Because the porosity of the reservoir is increasing with 
pressure, locations farther away from the well will experience 
pressure drop faster than those before them. More fluid will flow 
out of distant locations than closer locations. That is, the 
porosity towards the well will decrease with time leading to 
pressure build up towards the well bore. This situation can occur 
when debris flow and block the pores during production.  The 
pressure profile also shows that after a few hours of production 
there was an irregular, haphazard decrease in pressure with time 
at each location. The pressure at the well bore built up above 
the rest of the reservoir at 𝑡 = 50 hours and 𝑡 = 100 hours , 
showing that at such times, fluid flow to the reservoir will cease. 
The pressure profile is observed to be irregular due to pressure 
buildup and drop as the fluid flows in the reservoir. 

Darcy flux towards the well bore  

Table 2 and table 3 shows the Darcy flux obtained a for 20 hours 
and 50 hours respectively at r=1000 meters and r=6000 meters 
0f each model. The Darcy flux determines the fluid flow direction 
[23]. Three types of pressure gradient can be observed from 
table 2 and table 3, negative, zero and positive pressure gradients. 
Models with negative pressure gradient gave rise to negative 
Darcy flux which means fluid flow is in a direction opposite the 
well bore. Models with positive pressure gradient resulted in 
positive Darcy flux which means fluid flow is in the direction of 

Figure 9: Pressure Profile for the Linear Porosity and 
Constant Permeability Model. 

Figure 8: Pressure Distribution for the Linear Porosity and 
Constant Permeability Model. 
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the wellbore. Models with zero pressure gradient resulted to 
zero Darcy which means no fluid motion in a particular direction. 

 

Table 2: The slope and the Darcy velocity at 20 hours for two locations 

 

 

Table 3: The slope and the Darcy velocity at 50 hours for two locations 

 

Conclusion 

The nonlinear pressure diffusion–type equation with pressure 
dependent porosity and permeability models was derived and 
simulated using an explicit backward-forward finite difference 
scheme providing numerical solutions with the aid of MATLAB. 
The numerical results predicted the pressure distribution in a 
petroleum reservoir under the different porosity and 
permeability models. For a wellbore to be producing, the 
porosity and permeability should yield pressure curves that are 
increasing with increasing distances from the well and decrease 
with increasing time. Porosity and permeability models that 
resulted in increasing well pressure caused pressure buildup at 
the wellbore and resulted to little or no fluid flow to the well. 
Fluid flows to the wellbore when the Darcy flux towards it is 
positive. This research can be applied in the oil and gas industry 
to predict pressure behavior in reservoirs and make investment 
decisions, production and maintenance decision. 
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