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Introduction 

Studies on blood flow have widely received attention in 
recent times due to its importance in human anatomy and 
physiology. It is a complex study because blood flow is a 
circulatory system where the flow is driven by the pumping 
action of the heart. Blood is pumped into arteries and 
transported into capillary beds where the exchange of gases 
and nutrients takes place and then transported back into the 
heart through veins. This circulating blood provides the 
nourishment (nutrients, oxygen, and other soluble factors) 
needed for supporting life [14]. 

Like the busy highways, blood vessels have to be well-
constructed to withstand all the pressure that comes with 
blood circulation every minute of the day. To this end, the 
walls of the vessels are constructed in three layers known 
as tunics called tunica intima, tunica media and tunica 
external or adventitia respectively. 

In real life, there are many materials that can be seen with 
characteristics of both elasticity and viscosity. These 
materials are referred to as non-Newtonian fluids which 
blood is one of such fluids. These fluids can only be 
described satisfactorily by the combination of both the 
theory of elasticity or viscosity. According to Buchanan et 
al. [1], blood behaves differently when flowing in large 
vessels, in which Newtonian behavior is expected and in 
medium and small vessels where non-Newtonian effects 
appear. Zeb et al. [16] studied steady flow of an 
incompressible, third-grade fluid in helical screw rheometer 
(HSR) by “unwrapping or flattening” the channel, lands, and 

the outside rotating barrel.  Hayat et al. [5] considered 
steady boundary layer axisymmetric flow of third-grade fluid 
over a continuously stretching cylinder in the presence of 
magnetic field. They used homotopy analysis method 
(HAM) to solve the differential equations.  

Several studies have been conducted on three layered fluid 
flow most of which centered on the flow of blood in a three 
layered stenosed artery. For example, Chaturani and Biswas 
[2] modelled Couette flow of blood as a three-layered flow. 
The model basically consists of a core (red-cell suspension) 
and plasma (a Newtonian fluid) in the top (near the moving 
plate) and bottom (near the stationary plate) layers. Flow is 
assumed to be steady and laminar and fluids are 
incompressible. Rekha and Usha [9] presented a three-layer 
model consisting of a core region of suspension of the 
erythrocytes in plasma (fluid) of viscosity and a peripheral 
layer of cell free plasma layer to represent blood flow in 
small capillary and compared with the two fluid model 
(Casson fluid model) and particle fluid mixture model of 
Srivastava. Dharmendra [3] constructed a mathematical 
model to examine the characteristics of three-layered blood 
flow through the oscillatory cylindrical tube (stenosed 
arteries). His analysis was restricted to propagation of 
small-amplitude harmonic waves, generated due to blood 
flow whose wave length is larger compared to the radius of 
the arterial segment. The impacts of viscosity of fluid in 
peripheral layer and intermediate layer on the interfaces, 
average flow rate, mechanical efficiency, trapping and reflux 
were discussed with the help of numerical and 
computational results. Pandey et al. [7] studied the 
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theoretical study of two-dimensional peristaltic flow of 
power-law fluids in three layers with different viscosities. 
The analysis is carried out under low Reynolds number and 
long wavelength approximations.  

In recent time, perturbation method has been applauded for 
solving non-linear models in fluid dynamics. Sankar and 
Hemlatha [12] Sankar and Lee [13] used the perturbation 
method to obtain the flow variables in their studies of the 
pulsatile flow of non –Newtonian fluid in stenosed artery by 
considering blood as Casson fluid and Herschel –Bulkley 
fluid with body acceleration. The method seemed 
consistent and Rekha and Usha [9] used the method in their 
three-layer fluid model and compared with the two-fluid 
model (Casson fluid model) and particle fluid mixture model 
of Srivastava and there were no known variations in the 
results. Sankar [11] used the perturbation method in his 
two-fluid model for pulsatile flow in catheterized blood 
vessels. 

In all the above studies with a few on three layered fluid 
model, we are motivated from the above interesting models 
and results on blood flow through the stenosed arteries, to 
develop a mathematical model to study blood flow in three 
layers in presence of magnetic field also considering three 
different fluid flow models in the three layers. Perturbation 
method will be used to obtain approximate analytic solution 
to the model. 

Formulation of the model 

Consider a fully developed flow of blood axially symmetric, 
laminar, and pulsatile, in the axial direction through a 
circular tube with an axially symmetric mild stenosis which 
is influenced by magnetic field. It is assumed that the body 
fluid (blood) is flowing in three layers with the inner layer 
as a Casson fluid, the central layer of suspension of all 
erythrocytes as a third-grade fluid and the external layer of 
plasma as a Newtonian fluid. Consider blood as a magnetic 
fluid since red blood cells are a major bio-magnetic 
substance, blood flow will be influenced by the magnetic 
field. Hence in the present study, we considered the flow of 
blood to be unidirectional and in the axial direction as can 
be seen by the flow diagram below. Fernando [4], presented 
the Cauchy stress tensor for both Newtonian and non-
Newtonian fluids by 

𝜏 = −𝑃𝐼 + ෍ 𝑆௝

௡

௝ୀଵ

                                                    (1) 

𝑆௝, 𝑗 = 1,2,3, are called the stress tensors, 𝑃is the pressure 
force due to fluid flow. For the third-grade fluid we have 
𝑛 = 3 and the first three tensors 𝑆௝ are given by 

𝑆ଵ = 𝜇𝐴ଵ                                                                       (2) 

𝑆ଶ = 𝛼ଵ𝐴ଶ + 𝛼ଶ𝐴ଵ
ଶ                                                     (3) 

𝑆ଷ = 𝛽ଵ𝐴ଷ + 𝛽ଶ(𝐴ଶ𝐴ଵ + 𝐴ଵ𝐴ଶ) + 𝛽ଷ(𝑡𝑟𝐴ଵ
ଶ)𝐴ଵ    (4) 

Where 𝜇 is the coefficient of sheer viscosity and 
𝛼௜ , (𝑖 = 1,2), 𝛽௜ , (𝑖 = 1,2,3) are material constants.  𝐴௡ Are 
called RivlinEricksen tensors and are defined by the 
recursion relation    

𝐴௡ =
𝐷

𝐷𝑡
𝐴௡ିଵ + 𝐴௡ିଵ(𝛻𝑢) + (𝛻𝑢)்𝐴௡ିଵ, 𝑛 > 1  (5) 

𝐴ଵ = (𝛻𝑢) + (𝛻𝑢)்                                                      (6) 

When𝛽௝ = 0, (𝑗 = 1,2,3), then, the above model reduces 
to second grade fluid model and if 𝛼௜ = 0, (𝑖 = 1,2)and 
𝛽௝ = 0, (𝑗 = 1,2,3), the model reduces to classical Navier 
stokes viscous fluid model (Fernando, 2008). 

Let the velocity field for the fluid flow be given as a vector 
field, we assume the flow to be in the positive z-direction. 
This means that the pressure gradient must be negative and 
the following must hold. 

i). The velocity field is not dependent on the 
 coordinate 𝑧 and 𝜃. That is, 
 𝑢௥௥ , 𝑢ఏఏ , 𝑢௭௭, 𝑢௥ఏ , 𝑢௥௭, 𝑢ఏ௥ , 𝑢ఏ௭, 𝑢௭ఏ = 0 

ii). The extra stress are also not dependent on 
 the coordinate 𝑧 and 𝜃. That is, 
 𝜏௥௥ , 𝜏ఏఏ , 𝜏௭௭, 𝜏௥ఏ , 𝜏ఏ௥ = 𝜏ఏ௭ = 0 

iii). The sheer stress 𝜏ఏ௭ and 𝜏௭ఏ on planes through 
the axis of the pipe  are zero due to symmetry. 
This implies that the velocity field and the shear stresses are 
functions of 𝑟 alone. Hence, the constitutive equation of 
motion for a third-grade fluid flow is 

𝜏 = 𝜏௭௥ = 𝜇
𝜕𝑢

𝜕𝑟
+ 𝛼ଵ

𝜕ଶ𝑢

𝜕𝑡𝜕𝑟
+ 2𝛽ଷ ቆ

𝜕𝑢

𝜕𝑟
ቇ

ଷ

                (7) 

According to Sandoo et al, (2015)[10], the tunica media 
contains a large amount of smooth muscles that allows a 
more efficient exchange of gases and nutrients in blood 
within the capillary beds. Thus, due to the presence of 
hemoglobin (iron compound) in the red blood cells in that 
layer, we regard blood in the layer as a suspension of 
magnetic particles. Hence, the continuity equation and the 
momentum equations are respectively given by 

𝑑𝑖𝑣𝑢 = 0                                                                        (8) 

𝜌
௖

𝜕

𝜕𝑡
𝑢௖ = −

𝜕

𝜕𝑧
𝑃 −

1

𝑟

𝜕

𝜕𝑟
(𝑟𝜏௖)                                (9) 

𝜌
்

𝜕

𝜕𝑡
𝑢் = −

𝜕

𝜕𝑧
𝑃 −

1

𝑟

𝜕

𝜕𝑟
(𝑟𝜏்) + 𝜇

଴
𝑀

𝜕

𝜕𝑧
𝐻     (10) 

𝜌
ே

𝜕

𝜕𝑡
𝑢ே = −

𝜕

𝜕𝑧
𝑃 −

1

𝑟

𝜕

𝜕𝑟
(𝑟𝜏ே)                            (11) 

The pressure gradient is pulse; it is a function of the 
direction of flow 𝑧and time  𝑡, we assume 

−
𝜕

𝜕𝑧
𝑝 = 𝑞଴ + 𝐴ଵ 𝑐𝑜𝑠 𝜔 𝑡,     𝑡 ≥ 0                      (12) 
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The relations between the shear stress and the strain 
rate of the fluid in motion in the three layers, that is, 
the constitutive equation of motion of the fluid flow 
are given by  

ඥ𝜏௖ = ට𝜏௬ + ඨ−𝜇
𝜕

𝜕𝑟
𝑢௖ , 𝑖𝑓 ඥ𝜏௖ ≥ ට𝜏௬ 

𝑅௣(𝑧) ≤ 𝑟 ≤ 𝑅ଶ(𝑧) ⎭
⎪
⎬

⎪
⎫

           (13) 

𝜏் = −𝜇
்

𝜕

𝜕𝑟
𝑢் − 𝛼ଵ

𝜕ଶ

𝜕𝑟𝜕𝑡
𝑢் − 2𝛽ଷ ൬

𝜕

𝜕𝑟
𝑢்൰

ଷ

 

𝑖𝑓  𝑅ଶ(𝑧) ≤ 𝑟 ≤ 𝑅ଵ(𝑧)

ቑ   (14)  

𝜏ே = −𝜇
𝜕

𝜕𝑟
𝑢ே

𝑖𝑓  𝑅ଵ(𝑧) ≤ 𝑟 ≤ 𝑅(𝑧)

ቑ                                       (15) 

𝜕

𝜕𝑟
𝑢 = 0

𝑖𝑓  0 ≤ 𝑟 ≤ 𝑅(𝑧)

ቑ                                              (16) 

The boundary conditions are given as follows. 

𝜏஼ is finite at  𝑟 = 0            (17) 

 𝑢ே = 0 at 𝑟 = 𝑅(𝑧)   (18) 

 𝜏஼ = 𝜏் and 𝑢஼ = 𝑢் at 𝑟 = 𝑅ଶ(𝑧)  (19)  

𝜏ே = 𝜏் and 𝑢ே = 𝑢் at 𝑟 = 𝑅ଵ(𝑧)  (20) 

 𝑢஼ = 0 at 𝑟 = 0    (21) 

The geometry of the stenosis is given in figure1  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Geometry of the three layered stenosed artery 

 

and is defined by 

𝑅(𝑧) =

⎩
⎪
⎨

⎪
⎧

ቐ
𝑅଴ − ൬

ఋಶ

ଶ
൰ ቄ1 + 𝑐𝑜𝑠 ቂ

ଶగ

௟బ
ቀ𝑧 − 𝑑 −

௟బ

ଶ
ቁቃቅ

𝑖𝑛  𝑑 ≤ 𝑧 ≤ 𝑑 + 𝑙଴

𝑅଴ in the normal artery region

       (22) 

𝑅ଵ(𝑧) =

⎩
⎪
⎨

⎪
⎧

ቐ
𝛽𝑅଴ − ൬

ఋಾ

ଶ
൰ ቄ1 + 𝑐𝑜𝑠 ቂ

ଶగ

௟బ
ቀ𝑧 − 𝑑 −

௟బ

ଶ
ቁቃቅ

𝑖𝑛 𝑑 ≤ 𝑧 ≤ 𝑑 + 𝑙଴

𝛽𝑅଴ in the normal artery region

      (23)  
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𝑅ଶ(𝑧)

=

⎩
⎪
⎨

⎪
⎧

൞
𝛽ଵ𝑅଴ − ቆ

𝛿ூ

2
ቇ ቊ1 + 𝑐𝑜𝑠 ቈ

2𝜋

𝑙଴

ቆ𝑧 − 𝑑 −
𝑙଴

2
ቇ቉ቋ

𝑖𝑛 𝑑 ≤ 𝑧 ≤ 𝑑 + 𝑙଴

𝛽ଵ𝑅଴ in the normal artery region

 (24) 

Where 𝛽 is the ratio of the tunica media radius to the 

normal artery radius. 𝛽ଵ is the ratio of the tunica intima 

radius to the normal artery radius 𝛿ா , 𝛿ெand 𝛿ூare 
respectively the height of the stenosis in the tunics. 

We introduce the following non-dimensional variables 
to reduce our model into a model with dimensionless 
variables for easy computation.  

𝑧 =
𝑧

𝑅଴

, 𝑟 =
𝑟

𝑅଴

, 𝑧 =
𝑧

𝑅଴

, 𝑅(𝑧) =
𝑅(𝑧)

𝑅଴

, 𝑅ଵ(𝑧)

=
𝑅ଵ(𝑧)

𝑅଴

, 𝑞(𝑧) =
𝑞(𝑧)

𝑅଴

, 𝛿ா =
𝛿ா

𝑅଴

, 𝛿ெ =
𝛿ெ

𝑅଴

, 𝛿ூ =
𝛿ூ

𝑅଴

, 𝑡

= 𝜔𝑡, 𝛼஼
ଶ =

𝑅଴
ଶ𝜔𝜌஼

𝜇஼

, 𝛼்
ଶ =

𝑅଴
ଶ𝜔𝜌்

𝜇்

, 𝛼ே
ଶ =

𝑅଴
ଶ𝜔𝜌ே

𝜇ே

, ℓ

=
𝐴ଵ

𝑞଴

, 𝑢஼ =
𝑢஼

௤బோబ
మ

ସఓ಴

, 𝑢் =
𝑢்

௤బோబ
మ

ସఓ೅

, 𝐻 =
𝐻

𝑞଴

, 𝜏௖ =
𝜏௖

௤బோబ

ଶ

, 𝜏்

=
𝜏்

௤బோబ

ଶ

, 𝜏ே =
𝜏ே

𝑞଴𝑅଴/2
, 𝜃 =

𝜏௬

𝑞଴𝑅଴/2
, 𝛽

=
𝑎଴

𝑞଴

.                                                                            (25) 

  Thus, substituting (25) into (8) to (24) gives 

𝛼௖
ଶ

4

𝜕

𝜕𝑡
𝑢௖ = (1 + ℓ 𝑐𝑜𝑠(𝑡)) −

1

2𝑟

𝜕

𝜕𝑟
(𝑟𝜏௖)              (26) 

𝛼்
ଶ

4

𝜕

𝜕𝑡
𝑢் = (1 + ℓ 𝑐𝑜𝑠(𝑡)) −

1

2𝑟

𝜕

𝜕𝑟
(𝑟𝜏்)

+ 𝐹
𝜕

𝜕𝑧
𝐻 (27)                         (27) 

𝛼ே
ଶ

4

𝜕

𝜕𝑡
𝑢ே = (1 + ℓ 𝑐𝑜𝑠(𝑡)) −

1

2𝑟

𝜕

𝜕𝑟
(𝑟𝜏ே)         (28) 

and the constitutive equations becomes 

−
డ

డ௥
𝑢௖ = 2൫𝜏௖ − 2ඥ𝜃𝜏௖ + 𝜃൯,

𝑖𝑓 ඥ𝜏௖ ≥ √𝜃 

𝑎𝑛𝑑 
𝑅௣(𝑧) ≤ 𝑟 ≤ 𝑅ଶ(𝑧) ⎭

⎪
⎬

⎪
⎫

                          (29)  

If we let 
ఈభఠ

ఓ೅
= 𝛺, 

ఉయ௤బ
మோబ

మ

ఓ೅
య = 𝛬 

and further that 𝛬 = 16𝛼ଶ𝛬ଵ and 𝛺 = 2𝛼ଶ𝛺ଵ 
     

𝜏் = −
1

2

𝜕𝑢்

𝜕𝑟
− 𝛼ଶ𝛺ଵ − 𝛼ଶ𝛬ଵ ൬

𝜕𝑢்

𝜕𝑟
൰

ଷ

,

𝑖𝑓  𝑅ଶ(𝑧) ≤ 𝑟 ≤ 𝑅ଵ(𝑧)

ቑ             (30) 

𝜏ே = −
1

2

𝜕

𝜕𝑟
𝑢ே

𝑖𝑓 𝑅ଵ(𝑧) ≤ 𝑟 ≤ 𝑅(𝑧) 
ቑ                                              (31) 

𝜏஼  is finite at  𝑟 = 0            (32) 

 𝑢ே = 0 at 𝑟 = 𝑅(𝑧)            (33) 

𝜏஼ = 𝜏் and 𝑢் = 𝑢஼ at  𝑟 = 𝑅ଶ(𝑧)           (34) 

𝜏் = 𝜏ேand𝑢் = 𝑢ே at𝑟 = 𝑅ଵ(𝑧)           (35) 

𝑢஼ = 0 at 𝑟 = 0             (36)      

𝑅(𝑧) =

⎩
⎨

⎧
ቐ

1 − ൬
𝛿ே

2
൰ ൜1 + 𝑐𝑜𝑠 ൤

2𝜋

𝑙଴

൬𝑧 − 𝑑 −
𝑙଴

2
൰൨ൠ

𝑖𝑛 𝑑 ≤ 𝑧 ≤ 𝑑 + 𝑙଴

1,    in the normal artery region.

 (37) 

𝑅ଵ(𝑧) =

⎩
⎨

⎧
ቐ

𝛽 − ൬
𝛿்

2
൰ ൜1 + 𝑐𝑜𝑠 ൤

2𝜋

𝑙଴
൬𝑧 − 𝑑 −

𝑙଴

2
൰൨ൠ  

𝑖𝑛  𝑑 ≤ 𝑧 ≤ 𝑑 + 𝑙଴

𝛽         in the normal artery region

(38)  

and 

𝑅ଶ(𝑧) =

⎩
⎨

⎧
ቐ

𝛽ଵ − ൬
𝛿௖

2
൰ ൜1 + 𝑐𝑜𝑠 ൤

2𝜋

𝑙଴
൬𝑧 − 𝑑 −

𝑙଴

2
൰൨ൠ

𝑖𝑛 𝑑 ≤ 𝑧 ≤ 𝑑 + 𝑙଴ 

𝛽ଵ        in the normal artery region

  (39) 

Solution of the Three-Layered Model Equations using 
Regular Perturbation Method 

We present the following perturbation series as thus, 

𝜏ே = 𝜏ே଴ + 𝛼ே
ଶ 𝜏ேଵ + ⋯

𝜏் = 𝜏்଴ + 𝛼்
ଶ𝜏்ଵ + ⋯

𝜏஼ = 𝜏஼଴ + 𝛼஼
ଶ𝜏஼ଵ + ⋯

𝑢ே = 𝑢ே଴ + 𝛼ே
ଶ 𝑢ேଵ + ⋯

𝑢் = 𝑢்଴ + 𝛼்
ଶ𝑢்ଵ + ⋯

𝑢஼ = 𝑢஼଴ + 𝛼஼
ଶ𝑢஼ଵ+. . . ⎭

⎪⎪
⎬

⎪⎪
⎫

                       (40) 

Let us expand the flow characteristics of (26) to (31) in 
the perturbation series of 𝛼ଶand equate coefficients of 
𝛼as 
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𝛼଴:

  

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧4(1 + ℓ 𝑐𝑜𝑠(𝑡)) −

ଶ

௥

డ

డ௥
(𝑟𝜏஼଴) = 0

4(1 + ℓ 𝑐𝑜𝑠(𝑡)) + 𝐹
డ

డ௭
𝐻 −

ଶ

௥

డ

డ௥
(𝑟𝜏்଴) = 0

4(1 + ℓ 𝑐𝑜𝑠(𝑡)) −
ଶ

௥

డ

డ௥
(𝑟𝜏ே଴) = 0

−
డ

డ௥
(𝑢஼଴) = 2൫𝜏஼଴ − ඥ(𝜃𝜏஼଴) + 𝜃൯

𝜏்଴ =
ଵ

ଶ

డ

డ௥
(𝑢்଴)

𝜏ே଴ = −
ଵ

ଶ

డ

డ௥
(𝑢ே଴)

        (41)       

𝛼ଶ:  

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧

డ

డ௧
(𝑢஼଴) = −

ଶ

௥

డ

డ௥
(𝑟𝜏஼ଵ)

డ

డ௧
(𝑢்଴) = −

ଶ

௥

డ

డ௥
(𝑟𝜏்ଵ)

డ

డ௧
(𝑢ே଴) = −

ଶ

௥

డ

డ௥
(𝑟𝜏ேଵ)

−
డ

డ௥
(𝑢஼ଵ) = 2𝜏஼ଵ ൬1 − ටቀ

ఏ

ఛ಴బ
ቁ൰

𝜏்ଵ =
ଵ

ଶ

డ

డ௥
(𝑢்ଵ) + 𝛺ଵ

డమ

డ௧డ௥
(𝑢்଴)

+𝛬ଵ ൬
డ

డ௥
(𝑢்଴)൰

ଷ

𝜏ேଵ = −
ଵ

ଶ

డ

డ௥
(𝑢ேଵ)

                    42 

𝜏஼଴ = 𝐴(𝑟)                                                          (43) 

𝜏்଴ = 𝐴(𝑟) +
1

4
𝐹

𝜕

𝜕𝑧
𝐻 ቆ𝑟 −

𝑅ଶ
ଶ

𝑟
ቇ                 (44) 

𝜏ே଴ = 𝐴(𝑟) +
1

4
𝐹

𝜕

𝜕𝑧
𝐻 ቆ

𝑅ଵ
ଶ − 𝑅ଶ

ଶ

𝑟
ቇ                (45) 

𝑢ே଴ = 𝐴(𝑅ଶ − 𝑟ଶ) +
1

2
𝐹

𝜕

𝜕𝑧
𝐻(𝑅ଵ

ଶ − 𝑅ଶ
ଶ) 𝑙𝑛 ൬

𝑅

𝑟
൰ (46) 

𝑢஼଴ = 2𝜃(𝑅ଶ − 𝑟) + 𝐴(𝑅ଶ − 2𝑅ଵ
ଶ + 2𝑅ଶ

ଶ − 𝑟ଶ)

+
1

4
𝐹

𝜕

𝜕𝑧
𝐻(𝑅ଶ

ଶ − 𝑅ଵ
ଶ)

+
1

2
𝐹

𝜕

𝜕𝑧
𝐻(𝑅ଵ

ଶ − 𝑅ଶ
ଶ) 𝑙𝑛 ൬

𝑅

𝑅ଵ

൰

+
1

2
𝐹

𝜕

𝜕𝑧
𝐻(𝑅ଶ

ଶ) 𝑙𝑛 ൬
𝑅ଵ

𝑅ଶ

൰

+
4

3
√𝜃𝐴 ቆ𝑟

య

మ − 𝑅ଶ

య

మቇ                 (47) 

𝜏஼ଵ =
1

8
𝐵(2𝑅ଶ𝑟 − 4𝑅ଵ

ଶ𝑟 + 4𝑅ଶ
ଶ𝑟 − 𝑟ଷ)

+
1

42
𝐶 ቆ4𝑟

ఱ

మ − 7𝑅ଶ

య

మ𝑟ቇ          (48) 

𝜏்ଵ =
1

8
𝐵(2𝑅ଶ𝑟 − 4𝑅ଵ

ଶ𝑟 + 𝑟ଷ) +
1

4
𝐵 ቆ

𝑅ଶ
ସ

𝑟
ቇ

−
1

14
𝐶 ቌ

𝑅ଶ

ళ

మ

𝑟
ቍ                        (49) 

𝜏ேଵ =
1

8
𝐵(2𝑅ଶ𝑟 − 𝑟ଷ) +

1

4
𝐵 ቆ

𝑅ଶ
ସ − 𝑅ଵ

ସ

𝑟
ቇ

−
1

14
𝐶 ቌ

𝑅ଶ

ళ

మ

𝑟
ቍ                     (50) 

𝑢ேଵ =
1

16
𝐵(3𝑅ସ − 4𝑅ଶ𝑟ଶ + 𝑟ସ)

+
1

2
𝐵(𝑅ଶ

ସ − 𝑅ଵ
ସ) 𝑙𝑛 ൬

𝑅

𝑟
൰

+
1

7
𝐶 ቆ𝑅ଶ

ళ

మቇ 𝑙𝑛 ቀ
𝑟

𝑅
ቁ                (51) 

𝑢்ଵ

= 𝛺ଵ𝐵(𝑟ଶ − 𝑅ଵ
ଶ) +

3

4
𝛬ଵ ൬𝐹

𝜕

𝜕𝑧
𝐻൰

ଷ

(𝑅ଶ
ସ) 𝑙𝑛 ൬

𝑟

𝑅ଵ

൰

+
1

7
𝐶 ቆ𝑅ଶ

ళ

మቇ 𝑙𝑛 ൬
𝑅ଵ

𝑟
൰ +

1

2
𝐵(𝑅ଶ

ସ − 𝑅ଵ
ସ) 𝑙𝑛 ൬

𝑅

𝑅ଵ

൰

+
1

16
𝐵(3𝑅ସ + 4𝑅ଶ𝑟ଶ − 8𝑅ଵ

ଶ𝑟ଶ + 𝑟ସ − 8𝑅ଶ𝑅ଵ
ଶ + 8𝑅ଵ

ସ)

+
1

2
𝐵(𝑅ଶ

ସ) 𝑙𝑛 ൬
𝑟

𝑅ଵ

൰ +
1

7
𝐶 ቆ𝑅ଶ

ళ

మቇ 𝑙𝑛 ൬
𝑅ଵ

𝑅
൰

+ 3𝛬ଵ𝐴 ൬𝐹
𝜕

𝜕𝑧
𝐻൰

ଶ

(𝑅ଶ
ସ) 𝑙𝑛 ൬

𝑅ଵ

𝑟
൰ + 4𝛬ଵ𝐴ଷ(𝑅ଵ

ସ − 𝑟ସ)

+ 3𝛬ଵ𝐴ଶ ൬𝐹
𝜕

𝜕𝑧
𝐻൰ (𝑅ଵ

ସ − 2𝑅ଶ
ଶ𝑅ଵ

ଶ − 𝑟ସ + 2𝑅ଶ
ଶ𝑟ଶ)

+
3

4
𝛬ଵ𝐴 ൬𝐹

𝜕

𝜕𝑧
𝐻൰

ଶ

(𝑅ଵ
ସ − 4𝑅ଶ

ଶ𝑅ଵ
ଶ − 𝑟ସ + 4𝑅ଶ

ଶ𝑟ଶ)

+
1

16
𝛬ଵ ൬𝐹

𝜕

𝜕𝑧
𝐻൰

ଷ

ቆ𝑅ଵ
ସ − 6𝑅ଶ

ଶ𝑅ଵ
ଶ − 𝑟ସ + 6𝑅ଶ

ଶ𝑟ଶ +
2𝑅ଶ

଺

𝑅ଵ
ଶ

−
2𝑅ଶ

଺

𝑟ଶ
ቇ                                                                            (52) 
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𝑢஼ଵ

= −
1

16
𝐵(4𝑅ଶ𝑟ଶ − 8𝑅ଵ

ଶ𝑟ଶ + 8𝑅ଶ
ଶ𝑟ଶ − 𝑟ସ)

−
1

63
𝐸 ቆ10𝑅ଶ

ଷ + 4𝑟ଷ − 14𝑅ଶ

య

మ𝑟
య

మቇ + 𝛺ଵ𝐵(𝑅ଶ
ଶ − 𝑅ଵ

ଶ)

+
1

84
𝐹 ቆ28𝑅ଶ𝑟

య

మ − 56𝑅ଵ
ଶ𝑟

య

మ − 6𝑟
ళ

మ − 28𝑅ଶ𝑅ଶ

య

మ

+ 56𝑅ଵ
ଶ𝑅ଶ

య

మ + 6𝑅ଶ

ళ

మቇ +
3

4
𝛬ଵ ൬𝐹

𝜕

𝜕𝑧
𝐻൰

ଷ

(𝑅ଶ
ସ) 𝑙𝑛 ൬

𝑅ଶ

𝑅ଵ

൰

+
1

294
𝐶 ቆ33𝑅ଶ

ళ

మ + 16𝑟
ళ

మ − 49𝑅ଶ

య

మ𝑟ଶቇ

+ 4𝛬ଵ(1 + ℓ 𝑐𝑜𝑠(𝑡))ଷ(𝑅ଵ
ସ − 𝑅ଶ

ସ) +
1

7
𝐶 ቆ𝑅ଶ

ళ

మቇ 𝑙𝑛 ൬
𝑅ଵ

𝑅
൰

+ 3𝛬ଵ𝐴 ൬𝐹
𝜕

𝜕𝑧
𝐻൰

ଶ

(𝑅ଶ
ସ) 𝑙𝑛 ൬

𝑅ଵ

𝑅ଶ

൰ +
1

7
𝐶 ቆ𝑅ଶ

ళ

మቇ 𝑙𝑛 ൬
𝑅ଵ

𝑅ଶ

൰

+
1

16
𝛬ଵ ൬𝐹

𝜕

𝜕𝑧
𝐻൰

ଷ

ቆ𝑅ଵ
ସ − 6𝑅ଶ

ଶ𝑅ଵ
ଶ + 3𝑅ଶ

ସ +
2𝑅ଶ

଺

𝑅ଵ
ଶ ቇ

+
1

16
𝐵(3𝑅ସ + 8𝑅ଶ𝑅ଶ

ଶ − 16𝑅ଵ
ଶ𝑅ଶ

ଶ + 8𝑅ଶ
ସ − 8𝑅ଶ𝑅ଵ

ଶ

+ 8𝑅ଵ
ସ) +

1

2
𝐵(𝑅ଶ

ସ − 𝑅ଵ
ସ) 𝑙𝑛 ൬

𝑅

𝑅ଵ

൰ +
1

2
𝐵(𝑅ଶ

ସ) 𝑙𝑛 ൬
𝑅ଶ

𝑅ଵ

൰

+ 3𝛬ଵ𝐴ଶ ൬𝐹
𝜕

𝜕𝑧
𝐻൰ (𝑅ଵ

ସ − 2𝑅ଶ
ଶ𝑅ଵ

ଶ + 𝑅ଶ
ସ)

+
3

4
𝛬ଵ𝐴 ൬𝐹

𝜕

𝜕𝑧
𝐻൰

ଶ

(𝑅ଵ
ସ − 4𝑅ଶ

ଶ𝑅ଵ
ଶ

+ 3𝑅ଶ
ସ)                                                                          (53)  

If we let 

 𝐴 = (1 + ℓ 𝑐𝑜𝑠(𝑡)), 𝐵 = ℓ 𝑠𝑖𝑛(𝑡), 𝐶 =
ఏℓ ௦௜௡(௧)

ඥఏ(ଵାℓ ௖௢௦(௧))
,  

𝐸 =
ඥఏయℓ ௦௜௡(௧)

(ଵାℓ ௖௢௦(௧))
, 𝐹 = ℓ 𝑠𝑖𝑛(𝑡) ට

ఏ

(ଵାℓ ௖௢௦(௧))
.  

The solution of the system (41) and (42) together with 
the boundary conditions gives  

𝜏஼ = 𝐴(𝑟) +
1

8
𝛼஼

ଶ𝐵(2𝑅ଶ𝑟 − 4𝑅ଵ
ଶ𝑟 + 4𝑅ଶ

ଶ𝑟 − 𝑟ଷ)

+
1

42
𝛼஼

ଶ𝐶 ቆ4𝑟
ఱ

మ − 7𝑅ଶ

య

మ𝑟ቇ      (54) 

𝜏் = 𝐴(𝑟) +
1

2
𝐹

𝜕

𝜕𝑧
𝐻 ቆ

𝑅ଵ
ଶ − 𝑅ଶ

ଶ

𝑟
ቇ −

1

14
𝛼்

ଶ𝐶 ቌ
𝑅ଶ

ళ

మ

𝑟
ቍ

+
1

8
𝛼்

ଶ𝐵(2𝑅ଶ𝑟 − 4𝑅ଵ
ଶ𝑟

+ 𝑟ଷ)
1

4
𝛼்

ଶ𝐵 ቆ
𝑅ଶ

ସ

𝑟
ቇ                   (55) 

𝑢்

= 𝐴(𝑅ଶ − 2𝑅ଵ
ଶ + 𝑟ଶ) +

1

2
𝐹

𝜕

𝜕𝑧
𝐻(𝑟ଶ − 𝑅ଵ

ଶ)

+ 𝐹
𝜕

𝜕𝑧
𝐻(𝑅ଵ

ଶ − 𝑅ଶ
ଶ) 𝑙𝑛 ൬

𝑅

𝑅ଵ

൰ + 4𝛼்
ଶ𝛬ଵ𝐴ଷ(𝑅ଵ

ସ − 𝑟ସ)

+ 𝐹
𝜕

𝜕𝑧
𝐻(𝑅ଶ

ଶ) 𝑙𝑛 ൬
𝑅ଵ

𝑟
൰

+
3

4
𝛼்

ଶ𝛬ଵ𝐴 ൬𝐹
𝜕

𝜕𝑧
𝐻൰

ଶ

(𝑅ଵ
ସ − 4𝑅ଶ

ଶ𝑅ଵ
ଶ − 𝑟ସ + 4𝑅ଶ

ଶ𝑟ଶ)

+
1

2
𝛼்

ଶ𝐵(𝑅ଶ
ସ − 𝑅ଵ

ସ) 𝑙𝑛 ൬
𝑅

𝑅ଵ

൰ +
1

2
𝛼்

ଶ𝐵(𝑅ଶ
ସ) 𝑙𝑛 ൬

𝑟

𝑅ଵ

൰

+ 3𝛼்
ଶ𝛬ଵ𝐴 ൬𝐹

𝜕

𝜕𝑧
𝐻൰

ଶ

(𝑅ଶ
ସ) 𝑙𝑛 ൬

𝑅ଵ

𝑟
൰ +

1

16
𝛼்

ଶ𝐵(3𝑅ସ)

+
1

16
𝛼்

ଶ𝐵(4𝑅ଶ𝑟ଶ − 8𝑅ଵ
ଶ𝑟ଶ + 𝑟ସ − 8𝑅ଶ𝑅ଵ

ଶ + 8𝑅ଵ
ସ)

+
1

7
𝛼்

ଶ𝐶 ቆ𝑅ଶ

ళ

మቇ 𝑙𝑛 ൬
𝑅ଵ

𝑅
൰ +

1

7
𝛼்

ଶ𝐶 ቆ𝑅ଶ

ళ

మቇ 𝑙𝑛 ൬
𝑅ଵ

𝑟
൰

+ 3𝛼்
ଶ𝛬ଵ𝐴ଶ ൬𝐹

𝜕

𝜕𝑧
𝐻൰ (𝑅ଵ

ସ − 2𝑅ଶ
ଶ𝑅ଵ

ଶ − 𝑟ସ + 2𝑅ଶ
ଶ𝑟ଶ)

+ 𝛺ଵ𝛼்
ଶ𝐵(𝑟ଶ − 𝑅ଵ

ଶ) +
3

4
𝛼்

ଶ𝛬ଵ ൬𝐹
𝜕

𝜕𝑧
𝐻൰

ଷ

(𝑅ଶ
ସ) 𝑙𝑛 ൬

𝑟

𝑅ଵ

൰

+
1

16
𝛼்

ଶ𝛬ଵ ൬𝐹
𝜕

𝜕𝑧
𝐻൰

ଷ

ቆ𝑅ଵ
ସ − 6𝑅ଶ

ଶ𝑅ଵ
ଶ − 𝑟ସ + 6𝑅ଶ

ଶ𝑟ଶ

+
2𝑅ଶ

଺

𝑅ଵ
ଶ −

2𝑅ଶ
଺

𝑟ଶ
ቇ                                                       (56) 

𝜏ே = 𝐴(𝑟) +
1

2
𝐹

𝜕

𝜕𝑧
𝐻 ቆ

𝑅ଵ
ଶ − 𝑅ଶ

ଶ

𝑟
ቇ −

1

14
𝛼ே

ଶ 𝐶 ቌ
𝑅ଶ

ళ

మ

𝑟
ቍ

+
1

4
𝛼ே

ଶ 𝐵 ቆ
𝑅ଶ

ସ − 𝑅ଵ
ସ

𝑟
ቇ

+
1

8
𝛼ே

ଶ 𝐵(2𝑅ଶ𝑟 − 𝑟ଷ)              (57) 

𝑢ே = 𝐴(𝑅ଶ − 𝑟ଶ) +
1

2
𝐹

𝜕

𝜕𝑧
𝐻(𝑅ଵ

ଶ − 𝑅ଶ
ଶ) 𝑙𝑛 ൬

𝑅

𝑟
൰

+
1

16
𝛼ே

ଶ 𝐵(3𝑅ସ − 4𝑅ଶ𝑟ଶ + 𝑟ସ)

+
1

2
𝛼ே

ଶ 𝐵(𝑅ଶ
ସ − 𝑅ଵ

ସ) 𝑙𝑛 ൬
𝑅

𝑟
൰

+
1

7
𝛼ே

ଶ 𝐶 ቆ𝑅ଶ

ళ

మቇ 𝑙𝑛 ቀ
𝑟

𝑅
ቁ              (58) 
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𝑢஼

= 2𝜃(𝑅ଶ − 𝑟) + 𝐴(𝑅ଶ − 2𝑅ଵ
ଶ + 2𝑅ଶ

ଶ − 𝑟ଶ)

+
1

4
𝐹

𝜕

𝜕𝑧
𝐻(𝑅ଶ

ଶ − 𝑅ଵ
ଶ) +

1

2
𝐹

𝜕

𝜕𝑧
𝐻(𝑅ଵ

ଶ − 𝑅ଶ
ଶ) 𝑙𝑛 ൬

𝑅

𝑅ଵ

൰

+
1

2
𝐹

𝜕

𝜕𝑧
𝐻(𝑅ଶ

ଶ) 𝑙𝑛 ൬
𝑅ଵ

𝑅ଶ

൰ +
1

7
𝛼஼

ଶ𝐶 ቆ𝑅ଶ

ళ

మቇ 𝑙𝑛 ൬
𝑅ଵ

𝑅
൰

+
1

16
𝛼஼

ଶ𝛬ଵ ൬𝐹
𝜕

𝜕𝑧
𝐻൰

ଷ

ቆ𝑅ଵ
ସ − 6𝑅ଶ

ଶ𝑅ଵ
ଶ + 3𝑅ଶ

ସ +
2𝑅ଶ

଺

𝑅ଵ
ଶ ቇ

+ 3𝛼஼
ଶ𝛬ଵ𝐴 ൬𝐹

𝜕

𝜕𝑧
𝐻൰

ଶ

(𝑅ଶ
ସ) 𝑙𝑛 ൬

𝑅ଵ

𝑅ଶ

൰

+
1

294
𝛼஼

ଶ𝐶 ቆ33𝑅ଶ

ళ

మ + 16𝑟
ళ

మ − 49𝑅ଶ

య

మ𝑟ଶቇ

+ 𝛺ଵ𝛼஼
ଶ𝐵(𝑅ଶ

ଶ − 𝑅ଵ
ଶ) +

4

3
√𝜃𝐴 ቆ𝑟

య

మ − 𝑅ଶ

య

మቇ

−
1

16
𝛼஼

ଶ𝐵(4𝑅ଶ𝑟ଶ − 8𝑅ଵ
ଶ𝑟ଶ + 8𝑅ଶ

ଶ𝑟ଶ − 𝑟ସ)

−
1

63
𝛼஼

ଶ𝐸 ቆ10𝑅ଶ
ଷ + 4𝑟ଷ − 14𝑅ଶ

య

మ𝑟
య

మቇ

+
1

2
𝛼஼

ଶ𝐵(𝑅ଶ
ସ − 𝑅ଵ

ସ) 𝑙𝑛 ൬
𝑅

𝑅ଵ
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The volume flow rate is given by 

𝑄௧௛௥௘௘

= 2𝜋 ቈන 𝑢஼(𝑟, 𝑡)𝑟𝑑𝑟
ோమ(௭)

଴

+ න 𝑢்(𝑟, 𝑡)𝑟𝑑𝑟
ோభ(௭)

ோమ(௭)

+ න 𝑢ே(𝑟, 𝑡)𝑟𝑑𝑟
ோ(௭)

ோభ(௭)

቉                                          (60) 

The resistance to the fluid flow in the three layers is given by 

𝜆௧௛௥௘௘ =
−

డ

డ௭
(𝑃)

𝑄௧௛௥௘௘

                                                        (61)

 

𝜆௧௛௥௘௘ =
𝐴

𝑄௧௛௥௘௘

                                                            (62) 

The wall shear stress of the three-layered fluid flow is 
given by 

𝜏3௪ = 𝜏ே/௥ୀோ                                                           (63) 

𝜏3௪

= 𝐴(𝑅) +
1

2
𝐹

𝜕

𝜕𝑧
𝐻 ቆ

𝑅ଵ
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ଶ

𝑅
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1

8
𝛼ே

ଶ 𝐵(𝑅ଷ)

−
1
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𝛼ே

ଶ 𝐶 ቌ
𝑅ଶ

ళ

మ

𝑅
ቍ +

1

4
𝛼ே

ଶ 𝐵 ቆ
𝑅ଶ

ସ − 𝑅ଵ
ସ

𝑅
ቇ                      (64) 

 

Results and Discussion 

Blood as a third-grade fluid possesses two properties, the 
shear thickening and shear thinning properties which are vital 
to this study. Increasing or decreasing these properties will 
affect the flow rate positively or negatively as the case may be. 
In parametric research, numerical simulations are very useful 
tools. With numerical experiments, it is possible to extract 
information difficult or impossible to obtain in the laboratory, 
in most cases, giving a better understanding of the physics of 
the problem under study.  To this end, we have used the 
following to simulate the model; The dimensionless 
amplitudeℓ = 0.2,𝑑 = 2, 𝑙 = 1,. The Womersley numbers 
𝛼஼

ଶ = 1.1, 𝛼்
ଶ = 1.2and 𝛼ே

ଶ = 1.3are used respectively. The 
Womersley number is the ratio of unsteady inertial forces to 
viscous forces in the flow. It ranges from as large as about 20 
in the aorta, significantly greater than 1 in all large arteries, to 
as small as 10ିଷ  in the capillaries [8].  This put our decision 
for the choice of the Womersley numbers as reasonable. The 
value of 𝛽 is taken as 0.8, 𝛽ଵ as 0.6 respectively. The value 0.18 
is used for 𝛿ே, 0.17 for 𝛿் and 0.16 for 𝛿஼ .The model 
parameters were reduced to dimensionless parameters and 
hypothetical parameter values are thought of as a good guide. 
We used maple computer software to numerically simulate 
the model. 

According to Ku [6], Blood flow and pressure are unsteady 
and the cyclic nature of the heart pump creates pulsatile 
conditions in all arteries. The heart pumps blood in alternating 
cycles called systole and diastole. Blood volume flow rate 
occasioned by unsteady Pressure have characteristic pulsatile 
shapes that vary in different parts of the arterial system, as 

illustrated by Figures 2,3,4,5,6 and 7. Blood can be 

regarded as magnetic fluid, in which red blood cells are 
magnetic in nature. Liquid carriers in the blood contain 
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the magnetic suspension of the particle [15]. Figures 
2and 3 shows an increase in the volume flow rate as the 
applied magnetic field intensity increases. The flow rate 
begins to reduce to a low flow rate over time (Figure 
8). This suggests that, to improve on blood circulation, one 
need to constantly subject the body to moderate magnetic 
field intensity. 

Blood does not exhibit a constant viscosity at all flow rates 
and can be regarded as non-Newtonian and it is best studied 
under the field of bio-rheology.  The blood flow velocity 
effectively describes everything about the motion of blood in 
the circulatory system with many of the properties expressed 
mathematically in terms of the flow velocity. At the same time 
for a non-Newtonian fluid, the viscosity is determined by the 
flow characteristics.  Figures 14, 15 and 16, shows the 
variation of velocity profile of the three-layered fluid model 
along the radial distance for different values of magnetic field 
intensity, shear thinning and shear thickening. The velocity 
field is independent of the  𝑧 and  𝜃 coordinates therefore, it 
is changing only along the radial distance and the curves shift 
away from the origin and increase steadily when the shear 
thinning and magnetic field intensity increase (Figures 14 and 
15), and begin to move towards the origin when the shear 
thickening increases (Figure 16).  This shows that the velocity 
increases with increase in shear thinning and magnetic field 
and reduce with increase in shear thickening. 

 
Figure 2: Variation of the Volumetric Flow Rate of the Three-
Layered Blood Flow Model with Different Values of Magnetic 
Field Intensity in the Axial Direction after the Stenosis Position. 

 
Figure 3: Variation of the Volumetric Flow Rate of the Three-
Layered Blood Flow Model with Different Values of Magnetic 
Field Intensity in the Axial Direction before the Stenosis Position. 

 
Figure 4: Variation of the Volumetric Flow Rate of the Three-
Layered Blood Flow Model with Different Values of Shear 
Thickening in the Axial Direction after the Stenosis Position. 

 

 

Figure 5: Variation of the Volumetric Flow Rate of the Three-
Layered Blood Flow Model with Different Values of Shear 
Thickening in the Axial Direction before the Stenosis Position. 
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Figure 6: Variation of the Volumetric Flow Rate of the Three-
Layered Blood Flow Model with Different Values of Shear 
Thinning in the Axial Direction after the Stenosis Position. 

 

Figure 7: Variation of the Volumetric Flow Rate of the Three-
Layered Blood Flow Model with Different Values of Shear 
Thinning in the Axial Direction before the Stenosis’ Position. 

 

Blood as a fluid also known as pseudo-plastics, exhibit both shear 
thickening and shear thinning rheological properties. A fluid is said to 
be shear thickening if the viscosity of the fluid increases as the shear 
rate increases and is said to be shear thinning if the viscosity decreases 
as the shear rate increases. Generally, blood flow is highly 
dependent on the viscosity which determines the shear thinning and 
thickening of the blood. Increases in the shear thickening reduce the 
volume flow rate as seen by Figures4, 5 and 9 and increase the 
resistance (Figure 12). Whereas, increase in the shear thinning 
improves the volume flow rate to a great measure (Figures 6, 7 and 
10) offering a low resistance to the flow (Figure 13). 

 

Figure 8: Variation of the Volumetric Flow Rate of the Three-
Layered Blood Flow Model with Different Values of Magnetic 
Field Intensity over Time. 

 

Figure 9: Variation of the Volumetric Flow Rate of the Three-
Layered Blood Flow Model with Different Values of Shear 
Thickening over Time. 
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Figure 10: Variation of the Volumetric Flow Rate of the Three-
Layered Blood Flow Model with Different Values of Shear 
Thinning over Time. 

 

 

Figure 11: Variation of the Resistance to the Total Volume Flow 
Rate of the Three-Layered Blood Flow Model with Different 
Values of Magnetic Field Intensity in the Axial Direction before 
the Stenosis’ Position. 

 

Figure 12: Variation of the Resistance to the Total Volume Flow 
Rate of the Three-Layered Blood Flow Model with Different 
Values of Shear Thickening in the Axial  Direction before the 
Stenosis’ Position. 

 

 

Figure 13: Variation of the Resistance to the Total Volume Flow 
Rate of the Three-Layered Blood Flow Model with Different 
Values of Shear Thinning in the Axial Direction before the 
Stenosis Position. 

 

 

Figure 14: The Velocity Profile of the Three-Layered Blood Flow 
Model with Increasing Magnetic Field Intensity.  
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Figure 15: The Velocity Profile of the Three-Layered Blood Flow 
Model with Increasing Shear Thinning  

 

 

Figure 16: The Velocity Profile of the Three-Layered Blood Flow 
Model with Increasing Shear Thickening.  

 

 

Figure 17: The Shear Stress of the Three-Layered Blood Flow 
with Increasing Magnetic Field Intensity in the Radial Direction. 

 

 

Figure 18: The Wall Shear Stress of the Three-Layered Blood 
Flow with Increasing Magnetic Field Intensity in the Axial 
Direction. 

 

The shear stress at the wall that is associated with blood flow 
through an artery depends on the artery size and geometry 
(Potters, 2014). By this model, the shear stress is not 
determined by the shear thinning or shear thickening. 
However, the shear stress increases with increase in magnetic 
field intensity as seen by Figures 17 and 18.    

Under normal conditions, shear stress maintains its magnitude 
and direction within an acceptable range. While the direction 
of the stress may also change by the reverse flow, depending 
on the hemodynamic conditions. This supposes that the shear 
stress is in the direction of flow as can be seen by Figure 18. 

Conclusion 

This research reveals that one does not need to subject the 
whole body under the influence of a magnetic field to improve 
the blood volume flow rate. In fact, subjecting an artery in the 
magnetic field along the direction of flow for a few minutes 
increases the volume flow rate. Furthermore, increasing the 
magnetic field intensity continuously increases the volume 
flow rate as can be suggested in Figures 8 and 9 which increase 
the velocity of blood and the circulation would transmit the 
effect to whole body. This will constantly check the pressure 
force exerted by the heart, reducing its risk of total failure. 

This remains an interesting research. However, it is based on 
theoretical findings. Experimental results will further validate 
this concept for clinical benefits. 
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