
Shior et al.        FUAMJPAS 2(2):23-27  Dec., 2022        
 

22 
Publication of College of Science, Joseph Sarwuan Tarka University, Makurdi 

https://fuamjpas.org.ng/ 

 
 

 

  

 Vol. 2 No. 2, Dec. 2022 



Shior et al.        FUAMJPAS 2(2):23-27  Dec., 2022        
 

23 
Publication of College of Science, Joseph Sarwuan Tarka University, Makurdi 

https://fuamjpas.org.ng/ 

 
 

 
Projection Methods for the solution of Volterra Integro-Differential 

Equations 

*1M.M. Shior, 3T. Aboiyar, 2S.O. Adee and 3E.C. Madubueze 
1Department of Mathematics/Computer science Benue State University, Makurdi. 

2Department of Mathematics Modibo Adama University of Technology, Yola 
3 Department of Mathematics Joseph Sarwuan Tarka University, Makurdi 

*Correspondence E-mail: mshior@bsum.edu.ng 

Received: 15/07/2022   Accepted: 12/09/2022 Published online: 02/10/2022 

 

 

 

 

 

 

Introduction 

Projection approximation methods play an essential role in 
approximation theory, and have many interesting applications, 
particularly in solving integral equations. D' Almeida and 
Fernandes [3] used the projection approximation for solving 
weakly singular Fredholm integral equations of the second 
kind. For the solution of a weakly singular Fredholm integral 
equation of the second kind defined on a Banach space, for 
instance 𝐿 ଵ ( 𝑎 , 𝑏 ), the classical projection methods with the 
discretization of the approximating operator on a finite 
dimensional subspace usually use a basis of this subspace built 
with grids on (𝑎, 𝑏) . This may require a large dimension of 
the subspace. One way to overcome this problem is to 
include more information in the approximating operator or 
to compose one classical method with one step of iterative 
refinement. This is the case of Kulkarni method or iterated 
Kantorovich method. Here they compared these methods in 
terms of accuracy and arithmetic workload. A theorem stating 
comparable error bounds for these methods, under very 
weak assumptions on the kernel, the solution and the space 
where the problem is set, was given. According to [10], [6], 
[5], [1], and [9], in recent years collocation methods such as 
Cheby-shev, Taylor polynomials and B-spline functions  have 
been given for approximating the solutions of linear 
Fredholm–Volterra integro-differential equations. There are 
various methods to get the approximate solution. The most 
popular of these is the collocation method. Moreover, 
according to [2], these methods can be called projection 
methods because the collocation method makes essential use 
of projection (linear) operators. Mennouni and Guedjiba [7] 
studied projection approximations for solving Cauchy 

integro-differential equations using airfoil polynomials of the 
first kind. They studied a more general case and proved the 
convergence of the method. The proposed method was 
tested for two kernels which are particularly important in 
practice, some numerical examples were used to illustrate the 
accuracy of the method. Mennouni and Guedjiba [8] used the 
projection method to investigate the numerical solution for a 
class of integro-differential equations with Cauchy kernel by 
using airfoil polynomials of the first kind as basis function. 
According to them, this method, we obtained a system of 
linear algebraic equations and give some sufficient conditions 
for the convergence of the method. They Finally, investigated 
the computational performance of the method through some 
numerical examples. 

Based on the above, we will utilize the linear generalized 
inverse multiquadric function and the quadratic generalized 
linear multiquadric function as radial basis functions for the 
quadrature-based projection method in solving Volterra 
integro-differential equations of the first and second orders. 

The Projection Method 
We consider the nth order integro-differential equations of 
the form; 
 

෍ 𝑃௡(𝑥)𝑢(௡)(𝑥)

ே

௡ୀ଴

= 𝐹(𝑥) + 𝜆 න 𝐾(𝑥, 𝑡)𝑢(𝑦)𝑑𝑦 
௫

௔

 (1) 

 
Where the known functions 𝑃௡(𝑥), 𝑓(𝑥), 𝐾(𝑥, 𝑡) are defined 
on 𝑥, 𝑦 ∈ [𝑎, 𝑏]; 𝜆 a real parameter, 𝑢(𝑥) is the unknown 
function. 

Abstract 

In this paper, we utilized the linear generalized inverse multiquadric function and the quadratic generalized multiquadric 
function as radial basis functions for the quadrature-based projection method in solving Volterra integro-differential 
equations (VIDE) of first and second orders. The selected examples are evaluated using MAPLE 17 and MATLAB Softwares 
and the obtained results compared with the exact solution for the linear generalized inverse multiquadric function and 
the quadratic generalized linear multiquadric function as radial basis functions. The quadratic generalized linear 
multiquadric function has the best approximation for both the first and second order VIDEs. 
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We will assume we have 𝑘 initial conditions; 
 

𝑢(𝑥଴) = 𝛼ଵ, 𝑢ᇱ(𝑥଴) = 𝛼ଶ, 𝑢(௞ିଵ)(𝑥଴) = 𝛼௞       (2) 
 
In projection methods, we consider solving (3.95) within a 
frame work of some complete function space 𝑉, we choose a 
sequence of finite dimensional approximating subspaces 𝑉௡ ⊂
𝑉, 𝑛 = 1 with 𝑉௡ having dimensions𝑘௡ . Let 𝑉௡ have a basis 
{𝜙ଵ, ⋯ , 𝜙ே }, with 𝑁 = 𝑁௡. We seek a functions 𝑢௡ ∈ 𝑉௡ 
which can be written as 

𝑢௡(𝑥) = ෍ 𝐶௝𝜙௝(𝑥).                                          (3)

ே

௝ୀଵ

 

 
This is substituted into (1), and the coefficients {𝐶ଵ, ⋯ , 𝐶ே} 
are determined by forcing the equation to be almost exact in 
some sense. We will introduce 

𝜎௡(𝑥) = ෍ 𝑃௡(𝑥)𝑢(௡)(𝑥)

ே

௡ୀ଴

− 𝐹(𝑥) − 𝜆 න 𝐾(𝑥, 𝑡)𝑢(𝑦)𝑑𝑦
௫

௔

 

= ෍ 𝐶௝ ቌ෍ 𝑃௡(𝑥)𝜙௝
(௡)(𝑥) − න 𝐾(𝑥, 𝑡)𝜙௝(𝑦)𝑑𝑦    

௫

௔

௞

௡ୀ଴

ቍ

ே

௝ୀଵ

− 𝐹(𝑥)                                          (4) 

 

For 𝑥 ∈ [𝑎, 𝑏]. This equation is called the residual in the 
approximation of the equation when using 𝑢 ≈ 𝑢௡. 
The coefficients {𝐶ଵ, ⋯ , 𝐶ே} are chosen by forcing 𝜎௡(𝑥) to 
be approximately zero in some sense. The hope and 
expectation is that the resulting function 𝑢௡(𝑥) will be a good 
approximation of the true solution. 
We will pick distinct node points 𝑥ଵ, ⋯ , 𝑥ே ∈ [𝑎, 𝑏]. 𝜎௡(𝑥௜) =

0, 𝑖 = 1,2, ⋯ , 𝑁  
This leads to determining {𝐶ଵ, ⋯ , 𝐶ே} as the solution of the 
linear system. 
 

෍ 𝐶௝ ቌ෍ 𝑃௡(𝑥௜)𝜙௝
(௡)(𝑥௜) − න 𝐾(𝑥௜ , 𝑡)𝜙௝(𝑦)𝑑𝑦    

௫

௔

௞

௡ୀ଴

ቍ

ே

௝ୀଵ

− 𝐹(𝑥௜)                                       (5) 
𝑖 = 1,2, ⋯ , 𝑁 . 
 
For solving a 𝑘௧௛ order equation, then for 𝑁 unknown, and  𝑘 
initial conditions. We consider 𝑁 data sites. We select 𝑁 − 𝑘 
point  to evaluate (5) while the remaining equations are 
obtained using  

𝑢ே
(௠)(𝑥଴) = 𝛼௠ାଵ, 𝑚 = 0, ⋯ , 𝑘 − 1                (6) 

The integral domain [𝑎, 𝑥] must be transferred to the fixed 
interval [𝑎, 𝑏]. For this purpose, the following transformation 
can be used. 

𝑃(𝑥, 𝜃) =
𝑥 − 𝑎

𝑏 − 𝑎
𝜃 +

𝑏 − 𝑥

𝑏 − 𝑎
𝑎 

Employing this transformation (5) becomes 

෍ 𝐶௝ ቌ෍ 𝑃௡(𝑥௜)𝜙௝
(௡)(𝑥௜)

௞

௡ୀ଴

ே

௝ୀଵ

− න 𝐾∗൫𝑥௜ , 𝑃(𝑥௜ , 𝜃)൯𝜙௝(𝜃)𝑑𝜃    
௕

௔

ቍ

= 𝐹(𝑥௜) ,
𝑖 = 1,2, ⋯ , 𝑁 − 𝑘                      (7)    

Where 𝐾∗ =
௫ି௔

௕ି௔
𝐾 

An m-point quadrature formula with coefficients 𝜏௦ and 
weight 𝑤௦ in the interval [𝑎, 𝑏] in (7) yields 
 

෍ 𝐶௝ ቌ෍ 𝑃௡(𝑥௜)𝜙௝
(௡)(𝑥௜)

௞

௡ୀ଴

ே

௝ୀଵ

− ෍ 𝑤௦𝐾∗൫𝑥௜ , 𝑃(𝑥௜ , 𝜏௦)൯𝜙௝(𝜏௦)

௠

௦ୀଵ

ቍ

= 𝐹(𝑥௜) ,
𝑖 = 1,2, ⋯ , 𝑁 − 𝑘                       (8)    

 

For our choice of the basis function,  𝜙௝(𝑥) form a data-
dependent space. To this end, we use a function of the form  
𝜙௝(𝑥) = 𝜙൫𝑥, 𝑥௝൯ = 𝜙൫ห𝑥 − 𝑥௝ห൯. 
 
In this work we will consider  

𝜙(𝑟) =
ଶି(ఌ௥)మ

(ଵା(ఌ௥)మ)ర
 (linear generalized inverse multiquadric 

function) 

𝜙(𝑟) =
ଷି଺(ఌ௥)మା(ఌ௥)ర

(ଵା(ఌ௥)మ)ల
 (quadratic generalized multiquadric 

function) 

Application of the quadrature based projection method 
using the linear generalized inverse multiquadric 
 

Example 1 Consider the Volterra integro-differential 
equation of the first order in Day (1967) given by: 

  

𝑦ᇱ(𝑥) + 𝑦(𝑥) = (𝑥ଶ + 2𝑥 + 1)𝑒ି௫

+5𝑥ଶ + 8 − න 𝑡𝑦(𝑡)𝑑𝑡
௫

଴

,

0 ≤ 𝑥 ≤ 1
𝑦(0) = 10 ⎭

⎪
⎬

⎪
⎫

                  (9) 

The exact solution is 𝑦(𝑥) = 10 − 𝑥𝑒ି௫.  

 
Let 

𝑢௡(𝑥) = ෍ 𝐶௝𝜙௝(𝑥)

ே

௝ୀଵ

                                                (10) 

and 𝜙(𝑟) =
ଶି(ఌ௥)మ

(ଵା(ఌ௥)మ)ర
. 



Shior et al.        FUAMJPAS 2(2):23-27  Dec., 2022        
 

25 
Publication of College of Science, Joseph Sarwuan Tarka University, Makurdi 

https://fuamjpas.org.ng/ 

 
 

By equation (8) that is; 

  

෍ 𝐶௝ ቌ෍ 𝑃௡(𝑥௜)𝜙௝
(௡)(𝑥௜)

௞

௡ୀ଴

ே

௝ୀଵ

− න 𝐾∗൫𝑥௜ , 𝑃(𝑥௜ , 𝜃)൯𝜙௝(𝜃)𝑑𝜃    
௕

௔

ቍ

= 𝐹(𝑥௜) , 𝑖 = 1,2, ⋯ , 𝑁 − 𝑘             
 

and considering the integro-differential equation in Example 
1, we have: 
𝐾∗ =

௫ି௔

௕ି௔
𝐾, 

where 𝜙௝(𝑥) are basis functions. Comparing (8) with (9) we 
have  
𝐾(𝑥, 𝑡) = 𝑡 ,  𝐹(𝑥) = (𝑥ଶ + 2𝑥 + 1)𝑒ି௫ + 5𝑥ଶ +

8, 𝑃(𝑥, 𝜃) =
௫ି௔

௕ି௔
𝜃 +

௕ି௫

௕ି௔
𝑎 . 

Using seventeen collocation points and simplifying with the 
aid MATLAB software we have the result of the method 
compared with the exact solution in Table 1. 

 
Table 1: The Projection Method for Example 1 with the Linear Generalized Inverse Multiquadric and Quadratic Generalized 

Inverse Multiquadric with Absolute Errors 
𝑖 𝑥௜ Solution with 

Linear 
Generalized 

Inverse 
Multiquadric 

Exact solution Absolute error Solution with 
Quadratic 

Generalized 
Inverse 

Multiquadric 

Absolute error 

1 0.000000 9.999990 10.000000    7.781864 × 10ିଽ 10.000000   2.548788 × 10ିଽ 
2 0.055556 9.947456   9.947447    9.682569 × 10ି଺   9.947475   2.834905 × 10ିହ 
3 0.111111  9.900583 9.900573 9.379252 × 10ି଺    9.900602    2.876289 × 10ିହ 
4 0.166667    9.858928    9.858920    8.782200 × 10ି଺    9.858946    2.647638 × 10ିହ 
5 0.222222    9.822067   9.822058    8.337886 × 10ି଺    9.822084   2.532593 × 10ିହ 
6 0.277778   9.789601   9.789593    7.859580 × 10ି଺    9.789617    2.375425 × 10ିହ 
7 0.333333  9.761164 9.761156   7.414458 × 10ି଺    9.761179   2.250079 × 10ିହ 
8 0.388889    9.736414    9.736407    6.981155 × 10ି଺    9.736429    2.112758 × 10ିହ 
9 0.444444    9.715038      9.715031 6.577881 × 10ି଺    9.715051    1.993287 × 10ିହ 
10 0.500000  9.696741    9.696735    6.165623 × 10ି଺  9.696753  1.866418 × 10ିହ 
11 0.555556 9.681254    9.681248    5.792774 × 10ି଺ 9.681266 1.754303 × 10ିହ 
12 0.611111 9.668326    9.668321    5.394031 × 10ି଺    9.668337    1.633596 × 10ିହ 
13 0.666667 9.657727    9.657722    5.054930 × 10ି଺    9.657737    1.530887 × 10ିହ 
14 0.722222 9.649242    9.649237   4.677106 × 10ି଺    9.649251    1.411580 × 10ିହ 
15 0.777778 9.642673   9.642668    4.350966 × 10ି଺    9.642682    1.324219 × 10ିହ 
16 0.833333    9.637839       9.637835 3.959464 × 10ି଺    9.637847    1.184735 × 10ିହ 
17 0.888889 9.634571    9.634567    3.758833 × 10ି଺    9.634579    1.178639 × 10ିହ 
18 0.944444  9.632713    9.632710   2.884820 × 10ି଺    9.632717    7.462701 × 10ି଺ 
19 1.000000 9.632127    9.632121    6.364444 × 10ି଺    9.632147    2.675520 × 10ିହ 

 

Example 2 

Let us consider the Volterra integro-differential equation of 
the second order in Wazwaz (2011) given by  

𝑦ᇱᇱ(𝑥) = (1 + 𝑥) + න (𝑥 − 𝑡)𝑦(𝑡)𝑑𝑡
௫

଴

,

0 ≤ 𝑥 ≤ 1
𝑦(0) = 1

𝑦ᇱ(0) = 1 ⎭
⎪
⎬

⎪
⎫

             (11) 

The exact solution is 𝑦(𝑥) = 𝑒௫. 

let 

𝑢௡(𝑥) = ෍ 𝐶௝𝜙௝(𝑥)

ே

௝ୀଵ

                                           (12) 

By equation (8) that is  

෍ 𝐶௝ ቌ෍ 𝑃௡(𝑥௜)𝜙௝
(௡)(𝑥௜)

௞

௡ୀ଴

ே

௝ୀଵ

− න 𝐾∗൫𝑥௜ , 𝑃(𝑥௜ , 𝜃)൯𝜙௝(𝜃)𝑑𝜃    
௕

௔

ቍ

= 𝐹(𝑥௜) , 𝑖 = 1,2, ⋯ , 𝑁 − 𝑘             

and considering the integro-differential equation in Example 
2, we have: 

𝐾∗ =
௫ି௔

௕ି௔
𝐾, 

where 𝜙௝(𝑥) are basis functions. comparing (8) with (11) 
we have  
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𝐾(𝑥, 𝑡) = 𝑥 − 𝑡 ,  𝐹(𝑥) = (1 + 𝑥),     𝑃(𝑥, 𝜃) =
௫ି௔

௕ି௔
𝜃 +

௕ି௫

௕ି௔
𝑎 and 𝜙(𝑟) =

ଶି(ఌ௥)మ

(ଵା(ఌ௥)మ)ర
.  

and simplifying with the aid MATLAB computer software 
we have the result of the method compared with the 
exact solution in Table 2. 

 

Table 2: The Projection Method for Example 2 with the Linear Generalized Inverse Multiquadric and Quadratic Generalized 
Inverse Multiquadric with Absolute Errors 

 
𝒊 𝒙𝒊 Solution with 

Linear 
Generalized 

Inverse 
Multiquadric 

Exact 
solution 

Absolute error Solution with 
Quadratic 

Generalized 
Inverse 

Multiquadric 

Absolute error 

1 0.000000 0.999990 1.000000 4.566557 × 10ି଼ 1.000000 3.716055 × 10ିଽ 
2 0.055556 1.057127 1.057128  2.503576 × 10ି଻  1.057128 1.213365 × 10ି଻ 
3 0.111111    1.117520       1.117519 5.221358 × 10ି଻    1.117519    3.272218 × 10ି଻ 
4 0.166667   1.181360  1.181360 2.810283 × 10ି଻    1.181359    1.320731 × 10ି଺ 
5 0.222222    1.248849 1.248849 1.075667 × 10ି଻    1.248848    6.922862 × 10ି଻ 
6 0.277778    1.320194 1.320193 9.751285 × 10ି଻    1.320192    6.721333 × 10ି଻ 
7 0.333333    1.395613 1.395612 8.409910 × 10ି଻    1.395611    8.738628 × 10ି଻ 
8 0.388889    1.475341 1.475341 7.838330 × 10ି଻    1.475339    1.316403 × 10ି଺ 
9 0.444444    1.559624 1.559623 8.872456 × 10ି଻    1.559622   1.797235 × 10ି଺ 
10 0.500000    1.648722 1.648721 8.230098 × 10ି଻    1.648719    1.936996 × 10ି଺ 
11 0.555556    1.742910 1.742909 1.130465 × 10ି଺    1.742907    2.487153 × 10ି଺ 
12 0.611111    1.842479 1.842477   1.121861 × 10ି଺    1.842476   1.945132 × 10ି଺ 
13 0.666667    1.947735 1.947734    1.225780 × 10ି଺    1.947731    2.654696 × 10ି଺ 
14 0.722222    2.059005 2.059003   1.160124 × 10ି଺    2.059000    3.359561 × 10ି଺ 
15 0.777778    2.176632 2.176630   1.677757 × 10ି଺    2.176628    2.399399 × 10ି଺ 
16 0.833333    2.300977   2.300976    8.971588 × 10ି଻    2.300971    4.461830 × 10ି଺ 
17 0.888889    2.432427 2.432425 1.699060 × 10ି଺    2.432422    3.554353 × 10ି଺ 
18 0.944444    2.571386 2.571384    1.961140 × 10ି଺    2.571381    3.768764 × 10ି଺ 
19 1.000000    2.718283 2.718282   1.506753 × 10ି଺   2.718277    4.644195 × 10ି଺ 

 
 
Discussion  

Numerical experiments using the quadrature-based 
projection methods shows the usefulness of our method. 

The methods were developed using 𝜙(𝑟) =
ଶି(ఌ௥)మ

(ଵା(ఌ௥)మ)ర
  

(linear generalized inverse multiquadric function) and 

𝜙(𝑟) =
ଷି଺(ఌ௥)మା(ఌ௥)ర

(ଵା(ఌ௥)మ)ల
 (quadratic generalized linear 

multiquadric function) as the basis functions.  
 
Table 1 compares the solution of the linear first order 
Volterra integro-differential equation with constructed 
method using linear generalized inverse multiquadric 
function  and the Quadratic generalized multiquadric 
function with the absolute errors been 9.682569 × 10ି଺ 
as the maximum for the linear generalized inverse 
multiquadric function as the basis function while the 
solution with quadratic generalized multiquadric function 
has the maximum absolute errors as 2.876289 × 10ିହ. 
These methods based on both basis functions are quite 
accurate but the generalized linear multiquadric function 
yields superior results for the first order Volterra integro-
differential equation. 

Table 2 compares the solution of the linear second order 
Volterra integro-differential equation with the constructed 
method using linear generalized inverse multiquadric 
function  and the Quadratic generalized multiquadric 
function with the absolute errors been  1.961140 × 10ି଺ 
as the maximum  using the linear generalized inverse 
multiquadric function as basis function while the solution 
with quadratic generalized linear multiquadric function as 
basis function has its absolute errors been 4.644195 ×
10ି଺ as the maximum. 
 
Conclusion 
From the above methods, the quadratic generalized 
multiquadric function is a more accurate method for 
the solution of both first order and nth order Volterra 
integro-differential equations. 
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